Monatshefte für Chemie 119, 515-523 (1988)

Konzentrationen von Isomeren des Typs $P_mAs_{4-m}X_3$ in P_4S_3 ---As_4S_3- und P_4Se_3 ---As_4Se_3-Mischungen

Hans P. Baldus, Roger Blachnik* und Claudia Schneider

Institut für Anorganische Chemie, Universität Osnabrück, D-4500 Osnabrück, Bundesrepublik Deutschland

(Eingegangen 15. Juli 1987. Angenommen 1. Oktober 1987)

Concentrations of Isomers of Type $P_mAs_{4-m}X_3$ in P_4S_3 —As₄S₃ and P_4Se_3 —As₄Se₃ Mixtures

The reactions of P_4S_3 with As_4S_3 and of P_4Se_3 with As_4Se_3 in the molten state yields molecules of the type $P_mAs_{4-m}S_3$ and $P_mAs_{4-m}Se_3$, respectively. A method was developed to separate the different components by the HPLC technique, and to determine their concentrations. The identification of the isomers in the HPLC pattern was achieved with the aid of the LC-MS method. In the selenium system, the distribution of the different species is statistical. In the system P_4S_3 — As_4S_3 , the formation of PAs_3S_3 with one phosphorus atom in the apical position is favoured.

(Keywords: HPLC study of P_4S_3 — As_4S_3 and P_4Se_3 — As_4Se_3 mixtures; Constitution isomers of phosphorus arsenic chalcogenides; Equilibrium constants of phosphorus-arsenic exchange reactions)

Einleitung

In Schmelzen von P_4S_3 mit As_4S_3 oder P_4Se_3 mit As_4Se_3 entstehen über einen intermolekularen Austausch, der das Gerüst des A_4B_3 -Moleküls nicht verändert, Moleküle des Typs $P_mAs_{4-m}X_n$ (m = 0-4) [1-3]. Die Produkte existieren in jeweils zwei konstitutionsisomeren Formen, die sich in der Besetzung der apikalen Position (Abb. 1) unterscheiden. Die bisher von uns zur Charakterisierung der Moleküle verwendeten Methoden, wie ³¹P-NMR und Massenspektrometrie, erlaubten keine genauen

Abb. 1. Die beiden Formen des Moleküls PAs₃S₃

³⁷ Monatshefte für Chemie, Vol. 119/5

Aussagen über die Konzentration der Konstitutionsisomeren in den Reaktionsgemischen. Wir stellten uns daher die Frage, ob die Trennung der verschiedenen Moleküle und damit ihre quantitative Bestimmung mit Hilfe der HPLC möglich wäre.

Experimentelles

Die Randkomponenten P_4S_3 , P_4Se_3 , As_4S_3 und As_4Se_3 wurden aus den entsprechenden Elementen (Phosphor 99.999% Knapsack, Arsen 99.9995% Preussag, Schwefel 99.95% Merck und Selen 99.999% Retorte) durch Schmelzen in evakuierten Quarzampullen bei ca. 700 K präpariert. Anschließend wurden P_4S_3 und P_4Se_3 durch Umkristallisieren aus CS_2 , As_4S_3 durch Vakuumsublimation an einen mit flüssigem Stickstoff gekühlten Kühlfinger gereinigt. As_4Se_3 fiel bei dieser Präparationsmethode stets als glasiges Rohprodukt an. Durch Vakuumsublimation und Umkristallisieren des Sublimats aus CS_2 gelang es, kristallines As_4Se_3 herzustellen.

Die Mischungen in den Systemen P_4S_3 — As_4S_3 und P_4Se_3 — As_4Se_3 wurden durch Aufschmelzen der entsprechenden Gemenge aus P_4S_3 und As_4S_3 bzw. P_4Se_3 und As_4Se_3 erzeugt. Die Reaktionsprodukte wurden eine Woche bei 500 K getempert und danach auf Raumtemperatur abgeschreckt. Große Teile des Schnitts P_4Se_3 — As_4Se_3 liegen in einem Bereich des ternären Systems P—As—Se, in dem Glasbildung beim Abkühlen aus der Schmelze erfolgt. Die Präparate mit Gehalten zwischen 30 und 100 Mol% As_4Se_3 bildeten daher Gläser, die auch nach längerem Tempern nicht rekristallisierten. Kristalline Proben wurden aus diesen Gläsern durch Umkristallisieren in CS_2 erhalten.

Zur Durchführung der HPLC-Untersuchungen wurden die Proben in CS₂ gelöst. Bei einer unvollständigen Auflösung war eine Anreicherung von Phosphorchalkogeniden in der Lösung und der schwerer löslichen arsenhaltigen Moleküle im Rückstand zu erwarten. Daher wurden die Proben mit Hilfe eines Ultraschallbades vollständig gelöst. Die so erhaltenen Lösungen besaßen Konzentrationen zwischen 0.1 und 0.06 g/l. Als stationäre Phase für die Trennungen (Pumpe LKB Typ 2150) wurde eine Säule der Fa. Merck (250 mm × 4 mm), gefüllt mit LiChrosphere-100-CH-18/2-Material, Korngröße 5 μ m (Fa. Merck), benutzt. Im System P₄S₃—As₄S₃ wurde als Elutionsmittel eine Mischung aus Ethylenglykol/Methanol/Wasser im Volumenverhältnis von 40/40/20 und im System P₄Se₃—As₄Se₃ ein Ethylenglykol/Methanol-Gemisch im Volumenverhältnis von 60/40 verwendet. Der Nachweis der einzelnen Komponenten erfolgte durch die Messung der UV-Absorption bei 254 nm mit einem UV-Detektor (Uvicord S 2138, Fa. LKB). Jede Lösung wurde mindestens dreimal untersucht.

Zur Bestimmung der Konzentrationen von Strukturisomeren im System P_4S_3 —As₄S₃ wurden aufgrund der geringen Anteile der Isomeren mit apikalem Arsenatom in der Lösung zehn Messungen durchgeführt. Die massenspektrometrischen Untersuchungen erfolgten im Falle des Systems P_4S_3 —As₄S₃ mit einem Gerät der Firma Varian (311 A) durch Elektronenstoßionisation (70 eV). Die Isomeren des Typs $P_mAs_{4-m}Se_3$ (m = 0—4) konnten mit Hilfe des Thermospray-LC-MS-Systems der Fa. Hewlett Packard (5988 A) identifiziert werden.

Ergebnisse

Zur Untersuchung des Systems P₄S₃—As₄S₃ wurde eine Elutionsmittelzusammensetzung Methanol/Ethylenglykol/H₂O im Volumenverhält-

Isomere des Typs
$$P_m As_{4-m} X_3$$
 517

nis von 40/40/20 gewählt. Die Chromatogramme enthielten jeweils acht Peaks, die mit Hilfe massenspektroskopischer und ³¹P-NMR-Messungen identifiziert werden konnten. Ein zugeordnetes Chromatogramm ist in Abb. 2 wiedergegeben. Die Retentionszeiten ergaben sich bei einer Flußrate von 0.2 ml/min zu: As₄S₃ 51.2 min; PAs_{ap}As₂S₃ 56.8 min; P_{ap}As₃S₃ 60.3 min; P₂As_{ap}AsS₃ 64.8 min; P_{ap}PAs₂S₃ 71.2 min; P₃As_{ap}S₃ 76.5 min; P_{ap}P₂AsS₃ 85.9 min und P₄S₃ 107.7 min. Unter der Voraussetzung, daß die Extinktionskoeffizienten der Moleküle sich in der Reihe P_mAs_{4-m}S₃ (m = 0-4) von P₄S₃ nach As₄S₃ linear ändern, wurden aus den Peakflächen die Konzentrationen der einzelnen Spezies berechnet.

In diesem System wird die Bildung von PAs_3S_3 deutlich bevorzugt (Abb. 3), weiterhin sind die Konzentrationen der Moleküle mit apikalem Phosphoratom erheblich größer als die der entsprechenden Moleküle mit

Abb. 2. Chromatogramm einer Probe im System P_4S_3 —As $_4S_3$; 50 Mol% As $_4S_3$, Flußrate 0.2 ml/min, Elutionsmittel Methanol/Ethylenglykol/Wasser 40/40/20 Vol%

Abb. 3. Konzentrationen der unterschiedlichen Isomeren im System P_4S_3 —As $_4S_3$ 37*

Abb. 3a. Konzentrationen der Strukturisomeren von PAs₃S₃

Abb. 4. Chromatogramm einer Probe im System P₄Se₃—As₄Se₃; 70 Mol% As₄Se₃, Flußrate 0.2 ml/min, Elutionsmittel Methanol/Ethylenglykol 40/60 Vol%

apikalem Arsenatom. Das Konzentrationsverhältnis $c(P_{ap}): c(As_{ap})$ ist in allen Fällen etwa 95:5 (Tabelle 1, Abb. 3a).

Im System P_4Se_3 —As₄Se₃ wurde als Elutionsmittel ein Methanol/ Ethylenglykol-Gemisch im Volumenverhältnis von 40/60 verwendet. Die Proben wurden wieder in acht Komponenten aufgetrennt (Abb. 4). Die Retentionszeiten ergaben sich bei einer Flußrate von 0.2 ml/min zu:

		As ₄ S ₃				0.2	0.2	0.3	0.4	0.6	1.5	2.0	2.1	2.1	2.5	3.0	4.0	6.6	8.8	16.5	24.0	39.0	65.0	100
	Konzentration der Strukturisomeren in Mol%	PAs _{ap} As ₂ S ₃		PRESS	ļ	0.1	0.2	0.3	0.5	0.7	1.1	1.3	1.5	1.9	2.2	2.6	2.8	3.1	4.3	3.5	2.9	2.3	1.3	
		$P_{ap}As_3S_3$			0.8	2.3	3.4	6.2	9.1	12.8	18.4	24.2	36.4	38.0	50.8	58.4	63.2	66.5	71.1	70.8	66.5	53.1	30.2	
		$P_2As_{ap}AsS_3$		1	0.1	0.4	0.4	0.7	1.0	1.0	1.2	1.3	1.5	1.5	1.2	1.0	0.9	0.8	0.6	0.3	0.2	0.2	0.1	ł
		$P_{ap}PAs_2S_3$			2.6	8.0	10.8	15.3	18.0	22.5	26.4	28.2	30.0	29.5	25.8	22.0	20.1	17.5	12.3	6.2	4.8	3.9	2.9	
		$P_3As_{ap}S_3$			0.7	1.2	1.3	1.4	1.4	1.4	1.3	1.2	0.8	0.8	0.5	0.4	0.3	0.2	0.1	0.1				-
		$P_{ap}P_2AsS_3$			15.8	26.8	27.7	30.4	30.6	29.3	27.5	23.8	17.2	17.2	12.0	9.6	5.7	4.3	2.4	2.4	1.5	1.5	0.5	
		P_4S_3	0 	100	80.0	61.0	56.0	45.4	39.0	31.7	22.6	18.0	10.5	0.0	5.0	3.0	3.0	1.0	0.3	0.2	0.1	ļ	ļ	
	Bruttozusammen-	P ₄ S ₃ —As ₄ S ₃		100 - 0	955	9010	8515	8020	7525	70-30	6535	60-40	55-45	50-50	4555	40 - 60	3565	3070	2575	20-80	1585	1001	595	0-100

Isomere des Typs $P_mAs_{4-m}X_3$

Tabelle 1. Strukturisomere von P_mAs_{4-m}S₃

519

As₄Se₃ 46 min; PAs_{ap}As₂Se₃ 50 min; P_{ap}As₃Se₃ 51.5 min; P₂As_{ap}AsSe₃ 53 min; P₃As_{ap}Se₃ 54.5 min; P_{ap}PAs₂Se₃ 57.9 min; P_{ap}P₂AsSe₃ 64 min und P₄Se₃ 71.3 min. Die Zuordnung gelang in einer kombinierten HPLC-MS-Apparatur, wobei die in einer HPLC getrennten Fraktionen zusammen mit dem Elutionsmittel nach dem sogenannten Thermospray-Prinzip direkt in die Ionenquelle des Massenspektrometers gespritzt werden [4].

Abb. 5. Konzentrationen der unterschiedlichen Isomeren im System P_4Se_3 —As $_4Se_3$

Zur Berechnung der Konzentrationen aus den Peakflächen wurde, wie im System P_4S_3 — As_4S_3 , eine lineare Änderung der Extinktionskoeffizienten angenommen. Die Konzentrationsverläufe der Isomeren im System sind in Abb. 5 dargestellt und weichen erheblich von den im System P_4S_3 — As_4S_3 beobachteten Verhältnissen ab. Mit Hilfe des Massenwirkungsgesetzes wurden die Gleichgewichtskonstanten der drei unabhängigen Bildungsreaktionen berechnet. Bei dieser Rechnung wurde angenommen, daß es sich bei den Molekülschmelzen um ideale Mischungen handelt. Zum Vergleich sind im folgenden die Gleichgewichtskonstanten Kp(stat)für eine statistische Verteilung der Spezies mit angegeben.

(1) $3 P_4 Se_3 + As_4 Se_3 \rightarrow 4 P_3 As Se_3$	$Kp = 205 \pm 31$
	Kp(stat) = 256
(2) $2P_4Se_3 + 2As_4Se_3 \rightarrow 4P_2As_2Se_3$	$Kp = 1050 \pm 160$
	Kp(stat) = 1296
(3) $P_4Se_3 + 3As_4Se_3 \rightarrow 4PAs_3Se_3$	$Kp = 227 \pm 35$
	Kp(stat) = 256

		As_4Se_3			0.7	0.9	0.9	5.0	7.0	15.3	26.6	32.2	45.0		100
I addite 2. Ditaktarisomere von $r_m co_{4-m} c_3$		PAs _{ap} As ₂ Se ₃		0.3	1.4	2.0	3.5	7.1	8.0	10.5	14.6	14.1	13.6		
	in Mol%	$P_{ap}As_3Se_3$		0.5	2.9	3.8	6.4	14.2	16.0	20.1	25.9	28.2	26.0]	No. of Concession, Name
	kturisomeren	$P_2As_{ap}AsSe_3$		2.7	6.2	9.3	11.5	13.8	16.0	14.8	8.7	9.2	6.0		1
	Konzentration der Stru	$P_{ap}PAs_2Se_3$		3.5	8.2	10.6	12.5	15.8	19.5	16.0	8.8	9.6	5.0	1	
		$P_3As_{ap}Se_3$		13.5	17.0	20.2	17.4	14.3	13.0	8.5	5.5	2.7	2.0	-	ļ
		$P_{ap}P_2AsSe_3$		16.5	21.2	21.6	19.8	15.4	14.5	10.3	5.6	3.2	1.8		ļ
		P_4Se_3	100	63.0	42.6	31.6	28.0	15.1	6.0	4.5	4.3	0.8	0.6	-	
	Bruttozusammen-	$P_4Se_3 - As_4Se_3$	100-0	9010	8020	7525	7030	6040	5050	4060	3070	2575	20 - 80	10 - 90 *	0100

Ű < Tabelle 2 Structure connergent D * Da die Proben der Zusammensetzung 10 Mol% P₄Se₃, 90 Mol% As₄Se₃ nicht vollständig in Lösung zu bringen waren, wurde auf eine Konzentrationsbestimmung verzichtet

Sowohl die gefundenen Isomerenhäufigkeiten als auch die experimentellen Gleichgewichtskonstanten entsprechen einer statistischen Verteilung. Das Molekül PAs₃Se₃ wird nicht bevorzugt gebildet. Bei Molekülen gleicher Bruttoformel wurde im System P₄S₃—As₄S₃ beobachtet, daß die Besetzung der apikalen Position durch Phosphoratome überwiegt. Diese Präferenz der Phosphoratome für die apikale Lage ist im System P₄Se₃— As₄Se₃ nicht so deutlich ausgeprägt. Das Verhältnis der Isomere mit apikalem Phosphoratom zu solchen mit apikalem Arsenatom ist bei PAs₃Se₃; P_{ap}As₃Se₃/As_{ap}PAs₂Se₃ $\approx 2/1$ bzw. bei den Molekülen P₂As₂Se₃ und P₃AsSe₃ $\approx 1.2/1$ (Tabelle 2, Abb. 5*a*).

Abb. 5a. Konzentrationen der Strukturisomeren von PAs₃Se₃

Diskussion

Für die beobachteten Konzentrationsverläufe der Isomeren in den Systemen P_4S_3 — As_4S_3 und P_4Se_3 — As_4Se_3 gibt es zwei mögliche Erklärungen. Die eine beruht auf der Theorie der topologischen Ladungsstabilisierung von *Gimarc* und *Joseph* [5]. Die Autoren postulieren, daß besonders stabile Strukturen entstehen, wenn im homoatomaren isoelektronischen Referenzgerüst (hier P_7^{3-}) bei einer Substitution die Atompositionen so besetzt werden, daß die Atome mit der höchsten Elektronegativität die Positionen mit der größten Ladungsdichte und so fort einnehmen. Nach theoretischen Berechnungen [5] ist die Ladungsdichte an den drei zweibindigen P-Atomen am größten, geringer am apikalen P-Atom und am geringsten an den basalen P-Atomen. Aufgrund der Elektronegativitäten von Schwefel, Phosphor und Arsen [6] ergibt sich daraus für PAs₃S₃ eine Struktur, in der die Schwefelatome die zweibindigen Brückenpositionen besetzen, Phosphor apikal an der Spitze des Moleküls sitzt und die Arsenatome den basalen Dreiring bilden. Diese Voraussage entspricht den experimentellen Befunden.

Die Ergebnisse im System P₄Se₃—As₄Se₃ können allerdings nicht mit den theoretischen Überlegungen von Gimarc und Joseph in Einklang gebracht werden, obwohl die Bedingungen vergleichbar sind. Die Verteilung der gebildeten Moleküle ist statistisch und der Anteil von Molekülen mit apikalem Phosphoratom kaum erhöht.

Als alternative Erklärung bieten sich daher thermochemische Erwägungen an. Bei einer Reaktion des Typs

$$mP_4X_3 + (4-m)As_4X_3 \rightarrow 4P_mAs_{4-m}X_3$$

wird die Zahl der Phosphor-Chalkogenbindungen um 2(4-m) größer, wenn bei der Bildung des neuen Moleküls ein Phosphoratom die apikale Position besetzt. Wenn die Bindungsenergie von P-X größer als von As-X ist, wird die Reaktionsenthalpie daher exotherm. Sind dagegen die entsprechenden Bindungsenergien annähernd gleich, ist die Triebkraft der Reaktion nur in der Erhöhung der Entropie des Systems durch die Bildung der $P_mAs_{4-m}X_3$ -Moleküle zu suchen.

Die Bindungsenergie der P—S-Bindung beträgt -220 kJ mol^{-1} , die der As—S-Bindung -205 kJ mol^{-1} [7, 8]. Im System P₄S₃—As₄S₃ ist daher die bevorzugte Bildung von PapAs₃S₃ verständlich, da bei der Reaktion sechs zusätzliche Phosphor-Schwefelbindungen entstehen. Die Bindungsenergien der entsprechenden Bindungen mit Selen sind wahrscheinlich annähernd gleich, d. h. der Enthalpiegewinn bei der Reaktion zu P_mAs_{4-m}Se₃-Molekülen ist unwesentlich. Die Bildungsreaktion der Moleküle des Typs P_mAs_{4-m}Se₃ ist entropiegesteuert, was zu einer statistischen Verteilung führt.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für ihre Hilfe.

Literatur

- Blachnik R, Wickel U (1982) Z Naturforsch B37: 1507
 Blachnik R, Hoppe A, Rabe U, Wickel U (1981) Z Naturforsch B36: 1493
- [3] Blachnik R, Schröter P, Wickel U (1985) Z Anorg Allg Chemie 525: 150
- [4] Vestal ML (1983) Int J Mass Spectrom Ion Phys 46: 193
- [5] Gimarc B, Joseph PJ (1984) Angew Chemie 96: 518
- [6] Huheey JE (1983) Inorganic chemistry, 3rd edn. Harper, Cambridge, p 146 [7] Drowart J, Myers CE, Szwarc R, Vander Auwera-Mahieu A, Uy OM (1973) High Temp Sci 5: 482
- [8] Pahinkin SA, Molodyk AD, Belousov VI, Stel'chenko SS, Fedorov VA (1974) Inorg Mater 10: 1379